Exact Formulas for Coefficients of Jacobi Forms
نویسندگان
چکیده
In previous work, we introduced harmonic Maass-Jacobi forms. The space of such forms includes the classical Jacobi forms and certain Maass-Jacobi-Poincaré series, as well as Zwegers’ real-analytic Jacobi forms, which play an important role in the study of mock theta functions and related objects. Harmonic Maass-Jacobi forms decompose naturally into holomorphic and non-holomorphic parts. In this paper, we give exact formulas for the Fourier coefficients of the holomorphic parts of harmonic Maass-Jacobi forms and, in particular, we obtain explicit formulas for the Fourier coefficients of weak Jacobi forms.
منابع مشابه
The coefficients of differentiated expansions of double and triple Jacobi polynomials
Formulae expressing explicitly the coefficients of an expansion of double Jacobi polynomials which has been partially differentiated an arbitrary number of times with respect to its variables in terms of the coefficients of the original expansion are stated and proved. Extension to expansion of triple Jacobi polynomials is given. The results for the special cases of double and triple ultraspher...
متن کاملMemorandum on Dimension Formulas for Spaces of Jacobi Forms
We state ready to compute dimension formulas for the spaces of Jacobi cusp forms of integral weight k and integral scalar index m on subgroups of SL(2,Z).
متن کاملTrace Formulas and Inverse Spectral Theory for Jacobi Operators
Based on high energy expansions and Herglotz properties of Green and Weyl m-functions we develop a self-contained theory of trace formulas for Jacobi operators. In addition, we consider connections with inverse spectral theory, in particular uniqueness results. As an application we work out a new approach to the inverse spectral problem of a class of reflectionless operators producing explicit ...
متن کاملTaylor Coefficients of Mock-jacobi Forms and Moments of Partition Statistics
We develop a new technique for deriving asymptotic series expansions for moments of combinatorial generating functions that uses the transformation theory of Jacobi forms and “mock” Jacobi forms, as well as the Hardy-Ramanujan Circle Method. The approach builds on a suggestion of Zagier, who observed that the moments of a combinatorial statistic can be simultaneously encoded as the Taylor coeff...
متن کاملExact Formulas for Traces of Singular Moduli of Higher Level Modular Functions
Abstract. Zagier proved that the traces of singular values of the classical j-invariant are the Fourier coefficients of a weight 3 2 modular form and Duke provided a new proof of the result by establishing an exact formula for the traces using Niebur’s work on a certain class of nonholomorphic modular forms. In this short note, by utilizing Niebur’s work again, we generalize Duke’s result to ex...
متن کامل